वार्षिक प्रतिवेदन 2024-25

Annual Report 2024-25

अंतर-विश्वविद्यालय त्वरक केंद्र

(विश्वविद्यालय अनुदान आयोग का एक स्वायत्त अंतर-विश्वविद्यालय केंद्र)

INTER-UNIVERSITY ACCELERATOR CENTRE (An autonomous inter-university centre of UGC)

Annual Report 2024-25

Publication details

Board of Editors:

Dr. R. P. Singh

Dr. D. Kabiraj

Dr. C. P. Safvan

Dr. S. Nath (Chairman)

Mr. S. Ojha

Mrs. Priyambada Nayak

Mr. Ashutosh Pandey

Dr. Pankaj Kumar

Dr. Sugam Kumar

Mr. Joydeep Karmakar

Mr. Ambuj Mishra

Student representatives:

Mr. Alankar Singh

Mr. Rishabh Prajapati

Inter-University Accelerator Centre Aruna Asaf Ali Marg, New Delhi 110067, India.

© 2025

All rights reserved.

Printed by

M/s. Censer Advertising Pvt. Ltd. Sanjay Nagar, Mangolpur Kalan New Delhi 110085

Contents

C	onter	$_{ m nts}$		j
Fr	om t	he Di	rector's Desk	vii
E	ditor	s' Ren	narks	xiii
1	\mathbf{AC}	CELE	RATORS	1
	1.1	15UD	Pelletron	. 1
		1.1.1	Operational summary	. 1
		1.1.2	Maintenance	. 2
		1.1.3	Ion source activities and maintenance	. 2
	1.2	Linac	and superconducting resonator fabrication $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$. 2
		1.2.1	Linac maintenance	. 2
		1.2.2	Electronics developments in linac	. 3
		1.2.3	Superconducting resonator fabrication	. 3
	1.3	1.7 M	V tandem accelerator-based ion beam analysis facility	. 4
		1.3.1	Operation	. 4
		1.3.2	Maintenance	. 5
	1.4	Low e	energy ion beam facility	. 6
	1.5	AMS	and geochronology facilities	. 6
		1.5.1	Accelerator mass spectrometry	. 6
		1.5.2	National geochronology facility	. 7
	1.6	Low e	energy negative ion implanter facility	. 8
		1.6.1	Operation	. 8
		1.6.2	Maintenance	. 9
		1.6.3	Development activities	. 10
	1.7	Table	top accelerators	. 10
2	\mathbf{AC}	CELE	RATOR AUGMENTATION	11
	2.1	High	current injector	. 11
		2.1.1	ECR ion source	. 12
		2.1.2	Multi-harmonic buncher	
		2.1.3	Radio-frequency quadrupole	
		2.1.4	Spiral buncher	
		2.1.5	Drift tube linac	
		2.1.6	Beam acceleration tests through SC-linac	
		2.1.7	Beam experiment with HCI	
	2.2		Joseph Jagon hagad THe facility	17

CONTENTS

		2.2.1	Status of various subsystems of DLS	17
		2.2.2	Installation and testing of the fibre laser system	18
		2.2.3	Development of laser and RF synchronization by up-conversion scheme	19
		2.2.4	Production of electron beam using fibre laser system and detection of 2 and 4 electron	
			micro-bunches	19
		2.2.5	Development of a compact Faraday cup for detection and measurement of MHz multi	
			micro bunch electron beam produced using fiber laser system	20
		2.2.6	Production and detection scheme of THz using DLS facility	20
		2.2.7	Status of the photocathode deposition system at IUAC	22
3			CH SUPPORT FACILITIES	23
	3.1		rt laboratories	23
		3.1.1	High vacuum laboratory	23
		3.1.2	Cryogenics	26
		3.1.3	Beam transport system	30
		3.1.4	Detector laboratory	33
		3.1.5	Target development laboratory	35
		3.1.6	Radio frequency laboratory	36
		3.1.7	Health physics	41
		3.1.8	Data support laboratory	46
		3.1.9	Scientific computing, communication and artificial intelligence group	46
		3.1.10		48
			Ion source group	50
			Remote control laboratory	52
			Analog and nuclear instrumentation	55
	3.2		Systems	55
	5.4	3.2.1	Electrical group	55
		3.2.1 $3.2.2$	~ · ·	99
		3.2.2	Air conditioning, water system, cooling equipments, compressed air and fire hydrant	r
		0.0.0	systems	57
		3.2.3	Machanical workshop	58
		3.2.4	Civil engineering department	59
4	EX	PERIN	MENTAL FACILITIES IN BEAM HALL	61
	4.1	Scatte	ring chamber and neutron array	61
		4.1.1	Operation	61
		4.1.2	Maintenance	62
		4.1.3	New developments	62
		4.1.4	Relative efficiency calibration of BC501A neutron detectors	63
	4.2	Gamm	na detector arrays: GDA and INGA	64
		4.2.1	Maintenance activities	64
		4.2.2	New developments	64
	4.3	Recoil	separators	66
		4.3.1	Heavy Ion Reaction Analyzer	66
		4.3.2	HYbrid Recoil mass Analyzer	67
	4.4		ials science facilities	68
	4.4	4.4.1	Materials science beamline in Beam Hall I	68
		4.4.1	Beamline facilities in Beam Hall II	69
		4.4.2		
		4.4.0	Centre for materials characterization and measurements	70

		4.4.4	Materials synthesis and microscopy laboratory	70
		4.4.5	Transport measurement facilities	71
		4.4.6	Structure and spectroscopy laboratory	72
		4.4.7	Thin film deposition systems and high-temperature furnaces	74
		4.4.8	High-resolution transmission electron microscopy facility	74
	4.5	Radiat	ion biology	74
	4.6			76
		4.6.1		76
		4.6.2		76
		4.6.3		77
5	RES	SEARO	CH ACTIVITIES	7 9
•	5.1			79
	0.1	5.1.1	Measurements of mass-angle and mass-TKE distributions for 28 Si+ 160 Gd and 12 C+ 178 Hf	•
		0.1.1		80
		5.1.2	•	81
		5.1.3	·	82
		5.1.4	· · · · · · · · · · · · · · · · · · ·	83
		5.1.4		84
		5.1.6	·	85
		5.1.7		86
		5.1.8	•	87
		5.1.9		89
				89
			Disentangling the role of different entrance channels on the transfer reaction mechanism	
				91
				92
		5.1.14	Lifetime measurement of excited states of ⁷⁶ Kr using the Doppler shift attenuation method	93
	5.2	Materi		94
			Effect of 300 keV Ar-ions irradiation on structural and electrical properties of PLD-	
			1 1	96
		5.2.2	Low energy ion irradiation induced Au/Ag multilayer nanostructured substrates for	
		0.2.2	, , ,	97
		5.2.3	Structural and microscopic studies of ion-irradiated NASICON	
		3.2.3	-	98
		5.2.4	Systematic study of oxygen incorporation in iron pyrite thin film using O ⁻ implantation	
		5.2.5	Role of ion beams in dye sensitized solar cells	
		5.2.6	Effect of 150 keV Ar irradiation on Cu-alloy and ceramic	
		5.2.7	Tuning the thermoelectric properties of metal chalcogenides based thin films by low	
		0.2.1	energy ion beam irradiation	101
		5.2.8	Optically stimulated luminescence studies in NaLi ₂ PO ₄ :X Phosphor irradiated with	
			γ -rays and high energy C^{6+} ion beam for applications in radiation-hadron therapy 1	102
		5.2.9	Comparative analysis of the radiation hardness of PM6 and PTB7-Th for space appli-	
				102
		5.2.10	Correlation between structural, morphological, and electrical transport properties of	
				103

CONTENTS

	5.2.11	Green biosynthesis of silver nanoparticles utilizing Monstera deliciosa leaf extract and estimation of its antimicrobial characteristics	104
	5 2 12	Investigation of SHI irradiation on the quaternary Se-Te-Sn-Ag thin films	
		Influence of argon ion irradiation and silver ion implantation on properties of nanocrys-	
	5.2.14	talline ZnO	
	5.2.15	Sm doped Co_3O_4 thin Films	105
	5.2.16	$Ge_2Sb_2Te_5$	106
		Role of swift heavy ion irradiation	107
5.3	AMS a	and geochronology	110
	5.3.1	Assessing event chronology in the glacial and periglacial landscape of Lahaul and Spiti, Northwest Himalaya	110
	5.3.2	Late Quaternary Landscape Denudation in the lateritic badlands of Garbeta, West Bengal	111
	5.3.3	Paleoclimate reconstruction using peat-based proxy and understanding peat dynamics from climatically distinct regions in the Indian sub-continent	111
	5.3.4	Reconstruction of past seasonality using chemical proxies in gastropod remains at Tigrana, Haryana	
	5.3.5	Holocene climate variability deciphered from Chilika Lagoon sediments: Implication	
		to anthropogenic activity or paleocyclones?	
	5.3.6	Paleomonsoonal studies using multi-proxy data from marine and continental archives .	114
	5.3.7	Uranium-bearing quartz used in the synthesis of soda-lime-silica glasses having anti- fungal properties	115
	5.3.8	Paleoseismological evidence for segmentation of the Main Himalayan Thrust in the	
		Darjeeling-Sikkim Himalaya	
	5.3.9 5.3.10	Estimation of fossil fuel CO_2 in Delhi city using radio carbon measurements Tracing element mobility during Serpentinization: A case study from Indian Tethyan	116
		Ophiolites	116
	5.3.11	Biospheric CO_2 flux at a suburban site (Sonipat) in the Indo-Gangetic Plain using radiocarbon measurements	117
	5.3.12	Scientific and chronological investigation of ancient construction practices of UNESCO World Heritage Sites of Nalanda Mahavihara	118
	5.3.13	A comprehensive analysis of presence of heavy and trace elements in tumor cells suggesting the importance of personalized medicine	
	F 9 1 4		
		The production of low carbon steel at the Vikramshila Mahavihara	
		Oral traditions of the Lepchas: An archaeological enquiry in Sikkim	
- 1		Trace metal analysis in atmospheric aerosols (PM_{10}) in the cities of Bihar, India	
5.4		c and molecular physics	121
	5.4.1	Charge state distribution for 1.78–3.93 MeV/u Si projectiles passing through $10~\mu g/cm^2$ carbon foil	121
	5.4.2	Measurement of Ar^{q+} ion induced tungsten M x-ray relative intensity ratio with energy dependence	123
	5.4.3	Equilibrium and non equilibrium charge state distribution of fast Ti^{+p} ions in carbon	
		target	124

		5.4.4	L- shell X-ray production cross sections for Au and Bi induced by 30 MeV to 75 MeV	100
		F 4 F	boron ions	
		5.4.5	Multiple neutral emissions from ionic forms of small hydrocarbons $\dots \dots \dots \dots$	128
6	\mathbf{AC}		IIC ACTIVITIES	12 9
	6.1		time utilization	
	6.2	विद्यार्थी	कार्यक्रम / Student programmes	
		6.2.1	बी.एससी. ग्रीष्मकालीन कार्यक्रम / B.Sc. summer programme	
		6.2.2	एम.एस.सी. अभिविन्यास कार्यक्रम / M.Sc. orientation programme	
		6.2.3	पीएचडी शिक्षण कार्यक्रम / Ph.D teaching programme	133
	6.3	Librar	y	134
	6.4	List of	Ph.D. awardees	134
	6.5	List of	publications in the year 2024-2025	135
	6.6		seminars	
	6.7	35वां र	थापना दिवस समारोह / 35^{th} Foundation day celebration	145
	6.8	आई.यू.प	र.सी. खेल और सांस्कृतिक गतिविधियां / IUAC sports and cultural activities	146
	6.9	स्कूल, व	कार्यशाला, सम्मेलन इत्यादि / School, workshop, conference etc	149
		6.9.1	संसूचकों और जी.ई.ए.एन.टी4 सअनुकरण पर स्कूल / School on detectors and GEANT4 sim-	
			ulations	149
		6.9.2	ई.एक्स.पीई.वाई.ई.एस. का उपयोग करते हुए कंप्यूटर-एकीकृत विज्ञान प्रयोगों पर शिक्षक प्रशिक्षण कार्यक्रम	
			/ Teacher training programme on computer-integrated science experiments using Ex-	
			pEYES	151
		6.9.3	25वें राष्ट्रीय प्रौद्योगिकी दिवस समारोह / 25th national technology day celebration	153
		6.9.4	Physics with recoil separators and large neutron array	154
		6.9.5	उच प्रदर्शन कम्प्यूटिंग प्रौद्योगिकियों पर स्कूल / School on high performance computing tech-	
			nologies	155
		6.9.6	राष्ट्रीय स्नातक भौतिकी परीक्षा भाग-सी का आयोजन / Organization of national graduate physics	
			examination part-C	156
		6.9.7	पूर्वोत्तर पर्वतीय विश्वविद्यालय में अंतर विश्वविद्यालय त्वरक केंद्र का परिचय कार्यक्रम / Acquaintance	
			programme of IUAC at the North-Eastern Hill University	158
		6.9.8	भारी आयन विकिरण जीव विज्ञान पर स्कूल / School on heavy ion radiation biology	159
		6.9.9	धरणीधर विश्वविद्यालय में अंतर विश्वविद्यालय त्वरक केंद्र का परिचय कार्यक्रम / IUAC acquaintance	
			program at Dharanidhar University	
		6.9.10	ऊर्जा पदार्थों में आयन किरणपुंज पर कार्यशाला। / Workshop on ion beams in energy materials .	161
		6.9.11	उच्च प्रवाही अंतःक्षेपक का उपयोग करके आयन बीम प्रयोगों पर कार्यशाला / Workshop on ion beam	
			experiments using high current injector	162
		6.9.12	त्वरक अनुप्रयोगों के लिए वाइड बैंड इलेक्ट्रॉनिक्स" विषय पर बैठक / Theme meeting on "Wide band	
				163
		6.9.13	भूकालानुक्रम तकनीकों पर स्कूल / School on geochronology techniques	
		6.9.14	ई.एक्स.पी. – ई.वाई.ई.एस. का उपयोग करते हुए कंप्यूटर इंटरफेस्ड विज्ञान प्रयोगों पर शिक्षक प्रशिक्षण	
			कार्यक्रम / Teacher training programme on computer interfaced science experiments using	
			ExpEYES	166
		6.9.15	इलेक्ट्रॉन त्वरक, सिंक्रोट्रॉन विकिरण और फ्री इलेक्ट्रॉन लेजर पर स्कूल / School on electron acceler-	
			ator, synchrotron radiation and free electron laser	168
		6.9.16	कॉम्पैक्ट इलेक्ट्रॉन त्वरक का उपयोग करके उन्नत टेरा-हर्ट्ज़ एवं कॉम्पटन एक्स-रे उत्पन्न करने पर अंतर्राष्ट्रीय	
			कार्यशाला / International workshop on advanced generation of THz and Compton x-rays	
			using compact electron accelerator	168

CONTENTS

	इन-सिलिको क्वांटम मॉडलिंग अध्ययन पर स्कूल / School on in-silico quantum modelling studies	169
6.9.18	गामा रे स्पेक्ट्रोस्कोपी उपकरण और विश्लेषण पर स्कूल / School on gamma ray spectroscopy	
	instrumentation and analysis	170
6.9.19	कण त्वरक के क्षेत्र में कृत्रिम बुद्धिमत्ता और मशीन लर्निंग के संभावित उपयोग पर कार्यशाला / Workshop	
	on potential use of AI and ML in the field of particle accelerator	171
6.9.20	ट्रैप्ड चार्ज्ड पार्टिकल्स के साथ भौतिकी पर कार्यशाला – 2024 / Workshop on physics with trapped	
	charged particles - 2024	172
6.9.21	क्रायोजेनिक्स और अतिचालकता पर 29वां राष्ट्रीय सम्मेलन / The 29th national conference on	
	cryogenics and superconductivity	173
6.9.22	पंजाब केन्द्रीय विश्वविद्यालय, बिंउंडा में परिचय कार्यक्रम / Acquaintance program at the Central	
	University of Punjab, Bathinda	175
6.9.23	पदार्थ अभियांत्रिकी और लक्षण वर्णन में आयन किरणों पर अंतर्राष्ट्रीय सम्मेलन / International confer-	
	ence on ion beams in materials engineering and characterization	176
6.9.24	सूक्ष्म लक्षण वर्णन तकनीकों पर स्कूल (टी.ई.एम. / एस.ई.एम. / ए.एफ.एम.) / School on microscopic	
	characterization techniques (TEM / SEM / AFM)	177
6.9.25	हैदराबाद विश्वविद्यालय में परिचय कार्यक्रम / Acquaintance program at the University of Hy-	
	derabad	
	राष्ट्रीय विज्ञान दिवस का आयोजन / Celebration of the National Science Day	
	लखनऊ विश्वविद्यालय में परिचय कार्यक्रम / Acquaintance program at Lucknow University	
	ा प्रकोष्ठ – वार्षिक प्रतिवेदन	
	वित्त वर्ष २०२४-२५ में आयोजित हिंदी कार्यशालाएं और व्याख्यान	
	राजभाषा विभाग गृह मंत्रालय के पोर्टल पर पंजीकरण	
	केंद्र में द्विभाषी प्रशासनिक शब्दावली वितरण	
	विश्व हिंदी दिवस का आयोजन	
6.10.5	हिंदी पखवाड़ा, २०२४ का आयोजन	184
Appendices		
A Statutory	Committees of IUAC	187
B IUAC Per	sonnel	190
C Annual A	ecounts 2024-25	194

निदेशक की लेखनी से

अंतर विश्वविद्यालय त्वरक केंद (इंटर-यूनिवर्सिटी एक्सेलेरेटर सेंटर, IUAC) ने अपनी चल रही विकास परियोजनाओं में महत्वपूर्ण प्रगति की है, जिसमें हाई-परफॉरमेंस कंप्यूटिंग (HPC), मैग्नेटिक रेजोनेंस इमेजिंग (MRI) और हाई करंट इंजेक्टर (HCI) पहल शामिल हैं। संस्थान की लोकप्रिय सुविधा 15 यूडी पेलेट्रॉन त्वरक ने अप्रैल 2024 से मार्च 2025 तक 37 विभिन्न विश्वविद्यालयों, महाविद्यालयों और संस्थानों में 55 उपयोगकर्ताओं को बीमटाइम की कुल 429 शिफ्ट प्रदान करते हुए विश्वसनीय प्रदर्शन का प्रदर्शन किया है। इस अविध के दौरान, विभिन्न प्रयोगात्मक अनुप्रयोगों के लिए 7 Li, 10 B, 11 B, 12 C, 14 N, 16 O, 19 F, 28 Si, 30 Si, 32 S, 35 Cl, 48 Ti, 56 Fe, 58 Ni, 63 Cu, 79 Br, 107 Ag, 127 I और 197 Au सिहत विभिन्न समस्थानिकों के आयन बीम प्रदान किए गए। उपलब्ध कराई गई बीम के लिए अधिकतम टर्मिनल क्षमता 13.03 मेगा वोल्ट दर्ज की गई, जबिक कंडीशनिंग के दौरान बिना परिचालन के प्राप्त बीम की पीक टर्मिनल क्षमता लगभग 13.06 मेगा वोल्ट थी।

आत्मनिर्भर भारत और मेक इन इंडिया की पहलों के अनुरूप, IUAC ने राष्ट्रीय सुपरकंप्यूटिंग मिशन (NSM-TAC) के तहत 3 PF सुपरकंप्यूटिंग सुविधा की स्थापना के साथ अपने कंप्यूटिंग के आधारभूत ढांचे को सुदृढ़ बनाया है, और यह सुविधा "सुपरकंप्यूटिंग के लिए वर्चुअल ।UC" के रूप में स्थापित है, जिसमें CDAC टीम का तकनीकी सहयोग प्राप्त है। 70% CPU और 30% GPU संसाधनों से युक्त यह सुपरकंप्यूटिंग सिस्टम भारतीय परम रुद्र सर्वर का उपयोग करता है। यह सुविधा मार्च २०२४ से चालू है, जिससे उपयोगकर्ताओं द्वारा आवश्यक विभिन्न वैज्ञानिक कम्प्यूटेशनल सिम्युलेशन्स के प्रायोगिक परीक्षण की सुविधा मिलती है। इस समयाविध के दौरान, सुपरकंप्यूटिंग क्रस्टर (SCC) टीम ने प्रदर्शन को उपयोगकर्ता के अनुकूल करने के लिए विभिन्न कार्यक्रमों को सफलतापूर्वक स्थापित और बेंचमार्क किया गया। यह सुविधा औपचारिक रूप से 26 सितंबर, 2024 को माननीय प्रधान मंत्री श्री नरेंद्र मोदी द्वारा राष्ट्र को समर्पित की गई। कई विश्वविद्यालयों और संस्थानों के उपयोगकर्ताओं ने अपने कम्प्यूटेशनल अनुप्रयोगों के लिए सुविधा का उपयोग करना शुरू कर दिया है। लगभग 133416 कार्य पूरे किए गए, जिसमें 1246131 नोड्स का उपयोग किया गया और कार्य निष्पादन पर कूल 8,749 तुल्य दिन व्यतीत हुए। भारत के विभिन्न क्षेत्रों के कुल 306 उपयोगकर्ताओं ने परमाणु भौतिकी, पदार्थ विज्ञान, परमाणु और आणविक भौतिकी, जीव विज्ञान और कृत्रिम बुद्धिमत्ता सहित अन्य क्षेत्रों में अनुसंधान के लिए इस सुपरकंप्यूटिंग क्रस्टर का उपयोग किया है। इनमें से लगभग 131 उपयोगकर्ता IUAC के आंतरिक कर्मी हैं। IUAC कंप्यूटिंग सुविधा के पारदर्शी इष्टतम अभिगम्यता के लिए एक HPC एक्सेस नीति वर्तमान में विभिन्न क्षेत्रों के कम्प्यूटेशनल विशेषज्ञों की एक समिति गठित की गयी है। उपयोगकर्ताओं के प्रवीणता संवर्धन हेतु, अक्टूबर 2024 में "इन–सिलिको क्वांटम मॉडलिंग स्टडीज" पर केंद्रित एक स्कूल आयोजित किया गया। इस पांच दिवसीय कार्यक्रम में रुद्र क्रस्टर का उपयोग करते हुए व्याख्यान और व्यावहारिक सत्र एकीकार किए गए। इसके अतिरिक्त, IUAC में 15-16 मई, 2025 को "हाई-परफॉरमेंस कंप्यूटिंग" पर दो दिवसीय उपयोगकर्ता कार्यशाला भी आयोजित की गई।

Meity द्वारा वित्तपोषित IMRI परियोजना, जिसका उद्देश्य संपूर्ण शरीर के लिए MRI चुम्बक प्रणाली विकसित करना है, ने उन्नेखनीय प्रगति की है। चुम्बक प्रणाली को सफलतापूर्वक 1.51 की शक्ति तक सक्रिय किया गया तथा स्वदेशी रूप से विकसित चुम्बक रैंपिंग इकाई (MRU) का उपयोग करके उसी स्तर पर स्थिर किया गया। 1.51 पर स्थिरीकरण के पश्चात चुम्बक की विद्युत आपूर्ति काट दी गई। रैंपिंग प्रक्रिया के दौरान तथा सतत मोड में संचालन के दौरान चुंबकीय तथा विद्युत प्रवाह के व्यापक माप किए गए। MRI क्रायोस्टेट पर पुनर्सयोजन के लिए कार्यात्मक मूल्यांकन सिहत अनेक क्रायोजेनिक परीक्षण किए गए। सतत मोड में परीक्षण के पश्चात चुम्बक को स्वचालित रीति (मोड) में परिवर्तित किया गया तथा तत्पश्चात घरेलू चुम्बक रैंपिंग इकाई का उपयोग करके शून्य चुम्बकीय क्षेत्र में ढाला (रैंप किया) गया।इस MRI प्रणाली के SAMEER में इसके एकीकरण होने से पूर्व अंतिम रूप से इसके परीक्षण की योजना है।

IUAC में विकसित हाई करंट इंजेक्टर (HCI) को LINAC बूस्टर के माध्यम से त्विरत्र के रूप में परीक्षण की तैयारी की जा रही है। इस सुविधा के प्रथम उपयोगकर्ता द्वारा इसका प्रयोग जनवरी 2025 में हुआ, जिसमें 10^{14} से 10^{15} आयन/सेमी 2 तक के आयन प्रवाह पर छिद्रपूर्ण सिलिकॉन नमूनों को विकिरणित करने के लिए 40 nA पर 36 MeV 20 Ne $^{9+}$ बीम का उपयोग किया गया। इस प्रयोग ने HCI की स्थिर, उद्य–आवेश, उद्य–धारा बीम उत्पन्न करने की क्षमता की पुष्टि हुई।

दिल्ली लाइट सोर्स (डीएलएस) के नाम से जानी जाने वाली फ्री इलेक्ट्रॉन लेजर सुविधा पर कार्य प्रगति पर है, जिसमें एक उन्नत फाइबर-लेजर सिस्टम की स्थापना की गई है, जिसकी पल्स विड्थ (चौड़ाई) कई सौ फेम्टोसेकंड की रेंज में है, जिसे KEK जापान के सहयोग से विकसित किया गया है। 1 से 6.5 MeV के बीच की ऊर्जा वाले अल्ट्राशॉर्ट इलेक्ट्रॉन बीम गुच्छ (बंच) अब सामान्य रूप से सामान्य-संवाहक आरएफ गन के कॉपर फोटोकैथोड का उपयोग करके उत्पादित किए जाते हैं। इन बीम को 0.18 से 3.0 THz के बीच विद्युत चुम्बकीय विकिरण उत्पन्न करने के लिए स्थायी चुंबकों की सरणियों से बने एक अंडुलेटर में इंजेक्ट किया जाएगा।

पिछले वर्ष पेलेट्रॉन और LINAC के संयुक्त संचालन के सफल समापन के बाद, जिसके परिणामस्वरूप कई लंबे समय से लंबित परमाणु भौतिकी प्रयोग पूर्ण हुए, LINAC के दूसरे मॉड्यूल के तीन अनुनादकों के प्रदर्शन क्षमता को बढ़ाने के लिए अतिरिक्त सतह उपचार के माध्यम से इस प्रमुख मॉड्यूल का रखरखाव किया गया था। सुपरकंडिक्टिंग LINAC के लिए अतिरिक्त (स्पेयर) QWRs और स्लो ट्यूनर के निर्माण हेतु आउटसोर्सड (बाहरी कार्यदायी संस्था) की स्थल पर लंबित कार्य को पूर्ण करने के उद्देश्य से सभी आवश्यक घटकों, टूलींग और फिक्स्चर को IUAC कार्यशाला में स्थानांतरित करने के बाद निर्माण कार्य मई 2024 के अंत में प्रारम्भ हुआ। छह महीने के भीतर, सभी छह अनुनादकों के निर्माण को अंतिम रूप दिया गया और उनका दबाव रिसाव परीक्षण सफल रहा। वीईसीसी, कोलकाता के साथ चल रहे सहयोग जिसका उद्देश्य भारतीय संस्थान और फिक्सिब सहयोग (आईआईएफसी) के तहत फिक्तिब के लिए 5-सेल 650 मेगाहर्ज $\beta=0.61$ अण्डाकार गुहाओं का निर्माण करना है, में आशातीत सफलता प्राप्त हुई।

पदार्थ विज्ञान सुविधाओं का उपयोग भारत भर के विभिन्न विश्वविद्यालयों और संस्थानों के उपयोगकर्ताओं द्वारा किया गया, साथ ही इसका उपयोग ISRO और IGCAR जैसे संगठनों के राष्ट्रीय महत्व के कई कार्यक्रमों में भी किया गया। पिछले शैक्षणिक वर्ष में रखरखाव अविध के बाद, लौ एनर्जी आयन बीम सुविधा एक मौजूदा उच-वोल्टेज बिजली आपूर्ति के साथ चालू हो गई। मई 2024 में शुरू होने वाले उपयोगकर्ता बीम शेड्यूलिंग की तैयारी में इस विभव (पॉवर) आपूर्ति के साथ 200 kV तक बीम परीक्षण किए गए। नेगेटिव आयन इम्प्लांटर सुविधा (NIBF) ने प्रभावी ढंग से काम किया, आयन इम्प्लांटशन प्रयोगों के लगभग 45 शिफ्ट्स के लिए 40-200 keV रेंज में आयन बीम (11 B, 12 C, 16 O, 27 AI, 31 P, 56 Fe, 58 Ni, 59 Co, 63 Cu, 107 Ag, और 197 Au) प्रदान किए। ऑफ़लाइन पदार्थ अभिलाक्षणिक निरूपण और संस्रेषण सुविधाओं ने बड़ी संख्या में उपयोगकर्ताओं से महत्वपूर्ण उपयोग देखा। संस्रेषण (ई-बीम, आरएफ स्पटरिंग) और अभिलक्षणन सुविधाएं, जिनमें एफई-एसईएम, एएफएम, यूवी-विजिबल, एफटीआईआर और ट्रांसपोर्ट सुविधाएं शामिल हैं, को उपयोगकर्ताओं से प्राप्त लगभग 1300 नमूनों के लिए उपयोग किया गया।

नाभिकीय भौतिकी से संबंधित सुविधाओं का व्यापक रूप से अनुसंधानकर्ताओं द्वारा उपयोग किया गया। HIRA सुविधा पर कुल सात प्रयोग सम्पन्न हुए, जिनमें मध्यवर्ती द्रव्यमान तंत्रों में संलयन, अर्ध-लवचीकता (quasielasticity) तथा न्यूक्लिऑन अंतरण मापन शामिल थे। नवीन रूप से स्थापित बहु-एनोड गहन आयनीकरण कक्ष (multi-anode deep ionization chamber) ने गहरे सब-बैरियर ऊर्जा स्तरों पर संलयन मापनों के विस्तार और बहु-न्यूक्लिऑन अंतरण चैनलों की सटीक पहचान में महत्त्वपूर्ण भूमिका निभाई। INGA सुविधा के अंतर्गत पाँच प्रयोग संचालित किए गए, जिनमें क्लोवर डिटेक्टरों की मरम्मत तथा एक क्लोवर डिटेक्टर में FET का प्रतिस्थापन सम्मिलित था। इसके अतिरिक्त, पाँच नाभिकीय भौतिकी प्रयोग सामान्य प्रयोजन स्कैटरिंग कक्ष (GPSC) एवं न्यूट्रॉन डिटेक्टरों की राष्ट्रीय श्रृंखला (NAND) के माध्यम से निष्पादित किए गए। IUAC कार्यशाला द्वारा उच्च तीव्रता पुञ्जों/बीम्स (हाई करंट इंजेक्टर HCI सुविधा से) के उपयोग हेतु खगोल भौतिकी अनुसंधान के लिए एक बेलनाकार स्कैटरिंग कक्ष (45 सेमी ऊँचाई एवं 60 सेमी व्यास) का निर्माण IUAC कार्यशाला में किया गया है। वर्तमान वर्ष में नाभिकीय भौतिकी संबंधी इन सुविधाओं से कुल लगभग 31 शोध प्रकाशित हुए।

त्वरण द्रव्य विश्लेषण स्पेक्ट्रोमेट्री (Accelerator Mass Spectrometry) सुविधा, जो ¹⁴C, ¹⁰Be तथा ²⁶Al समस्थानिकों के मापन हेतु 500 kV पेलेट्रॉन एक्सीलेरेटर (XCAMS) पर आधारित है, मार्च 2015 से सतत रूप से क्रियाशील है। इस सुविधा का प्रयोग विविध महत्वपूर्ण अनुसंधानों के लिए किया गया है। ग्रैफिटाइजेशन प्रयोगशाला द्वारा अब तक लगभग 1,313 नमूनों का संसाधन किया गया, जिसमें 61 उपयोगकर्ताओं ने प्रत्यक्ष रूप से भाग लिया। ¹⁰Be/²⁶Al मापन हेतु आवश्यक नमूनों का संसाधन एक 10000 श्रेणी (क्लास) की स्वच्छ रसायन प्रयोगशाला में किया जाता है। अब तक, कॉस्मोजेनिक रेडियो न्यूक्लियोटाइड (CRN) मापन हेतु कुल 92 नमूनों का संसाधन किया गया, जिसमें देश के विभिन्न विश्वविद्यालयों एवं संस्थानों के चार उपयोगकर्ता सम्मिलित थे। ¹⁴C हेतु कॉम्पैक्ट एक्सीलेरेटर मास स्पेक्ट्रोमीटर, जो अब ¹⁰Be एवं ²⁶Al मापन के लिए भी उच्चीकृत किया जा चुका है (XCAMS), द्वारा नियमित रूप से 1,542 नमूनों का मापन किया गया है। साथ ही, उच्च-रिजोल्यूशन द्वितीयक आयन मास स्पेक्ट्रोमीटर (HR-SIMS) का उपयोग जिरकोन में U-Pb तथा ऑक्सीजन समस्थानिकों के अध्ययन, बहु-स्तरीय पदार्थ में गहराई प्रोफाइलिंग, एवं उल्कापिंडों में विद्यमान कैल्शियम-एल्युमिनियम समृद्ध समावेशन (CAIS) में Al-Mg समस्थानिक प्रणाली के विश्लेषण हेतु किया गया। गत वर्ष इस सुविधा के माध्यम से

देश के आठ विश्वविद्यालयों और संस्थानों से सम्बद्ध नौ उपयोगकर्ताओं के कुल 1,293 मापन पूर्ण किए गए।

विकिरण जैविकी सुविधा का प्रयोग दो बीमटाइम सत्रों के दौरान किया गया, जिनमें एक फेफड़े के कैंसर कोशिका रेखा (सेल लाइन) पर केंद्रित अध्ययन तथा अन्य में 50 MeV लिथियम आयनों का प्रयोग कर 4 सेमी व्यास वाले वृत्ताकार क्षेत्र में विकिरण खुराक की समानता के परीक्षण हेतु किया गया। साथ ही, 'पूसा सोयाबीन 21' की गामा एवं लिथियम आयन विकिरणित किस्मों के फेनोटाइप परीक्षण हेतु एक ऑन-साइट सुविधा की स्थापना का कार्य आरंभ किया गया, और प्रयोगशाला में आवश्यक संरचनात्मक एवं तकनीकी उन्नयन भी संपन्न हुआ।

वर्ष 2024–25 में संस्थान द्वारा विशिष्ट विषयों पर आधारित कार्यशालाओं, प्रशिक्षण शिविरों एवं सम्मेलनों का आयोजन प्राथमिकता के साथ किया गया, जिससे उपयोगकर्ताओं को अत्याधुनिक प्रयोगात्मक अनुसंधानों एवं सुविधाओं से जुड़े रहने का अवसर प्राप्त हुआ। कुल मिलाकर 22 से अधिक कार्यक्रम सफलतापूर्वक संपन्न हुए। वर्ष के दौरान अनेक उपलब्धियाँ प्राप्त हुई, और हम आगामी वर्षों में नवीन चुनौतियों को आत्मसात करने के लिए प्रतिबद्ध एवं आशान्वित हैं।

अविनाश चन्द्र पाण्डेय

निदेशक, आई.यू.ए.सी

From the Director's Desk

The Inter-University Accelerator Centre (IUAC) has made significant advancements in its ongoing development projects, including High-Performance Computing (HPC), Magnetic Resonance Imaging (MRI), and High Current Injector (HCI) initiatives. The principal 15 UD Pelletron accelerator has demonstrated reliable performance, delivering a total of 429 shifts of beamtime to 55 users across 37 different universities, colleges, and institutes from April 2024 to March 2025. During this period, ion beams of various isotopes, including ⁷Li, ¹⁰B, ¹¹B, ¹²C, ¹⁴N, ¹⁶O, ¹⁹F, ²⁸Si, ³⁰Si, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵⁶Fe, ⁵⁸Ni, ⁶³Cu, ⁷⁹Br, ¹⁰⁷Ag, ¹²⁷I and ¹⁹⁷Au, were provided for diverse experimental applications. The maximum terminal potential for the delivered beams was recorded at 13.03 MV, while the peak terminal potential achieved during conditioning without operational beam was approximately 13.06 MV.

In alignment with the initiatives for Atmanirbhar Bharat and Make in India, IUAC has enhanced its computing infrastructure with the installation of a 3 PF supercomputing facility under the National Supercomputing Mission (NSM-TAC), designated as "Virtual IUC for Supercomputing", with technical support from the CDAC team. This supercomputing system, comprising 70% CPU and 30% GPU resources, utilizes Indian PARAM Rudra servers. The facility has been operational since March 2024, facilitating the testing of various scientific computational programs required by users. During this timeframe, the Supercomputing Cluster (SCC) team successfully installed and benchmarked programs to optimize performance. The facility was formally dedicated to the nation by the Honorable Prime Minister, Shri Narendra Modi, on September 26, 2024. Users from multiple universities and institutes commenced utilizing the facility for their computational applications. Approximately 133416 jobs were completed, utilizing 1246131 nodes with a total of 8,749 days spent on job execution. A total of 306 users from different regions of India have accessed this supercomputing cluster for research in Nuclear Physics, Material Science, Atomic and Molecular Physics, Biology, and Artificial Intelligence, among others. Of these, around 131 internal users comprise IUAC personnel. An HPC access policy for the IUAC computing facility is currently under development by a committee of computational experts from various fields. To enhance user proficiency, a school focused on "In-Silico Quantum Modelling Studies" was conducted in October 2024. This five-day program integrated lectures and practical sessions utilizing the Rudra cluster. Additionally, a two-day User Workshop on "High-Performance Computing" took place on May 15-16, 2025, at IUAC.

The MeitY-funded MRI project, aimed at developing a whole-body MRI magnet system, has achieved considerable progress. The magnet system was successfully energized to a strength of 1.5 T and stabilized at that level using an indigenously developed Magnet Ramping Unit (MRU). The power supply for the magnet was disconnected following stabilization at 1.5 T. Extensive magnetic and electrical measurements were conducted during the ramping process and while operating in persistent mode. Numerous cryogenic tests, including performance evaluations for recondensation, were performed on the MRI cryostat. After testing in persistent mode, the magnet was transitioned to driven mode and subsequently ramped down to zero field using the domestic magnet ramping unit. Final tests for the MRI system are currently being planned before its commissioning at SAMEER.

The High Current Injector (HCI) at IUAC is preparing for its acceleration test through the LINAC booster. The initial user experiment took place in January 2025, utilizing a 36 MeV 20 Ne $^{9+}$ beam at 40 nA to irradiate porous silicon samples at fluences ranging from 10^{14} to 10^{15} ions/cm². This experiment confirmed the HCI's ability to produce stable, high-charge, high-current beams.

Work on the Free Electron Laser facility, known as the Delhi Light Source (DLS), is advancing with the installation of an advanced fiber-laser system that has a pulse width in the range of several hundred femtoseconds, developed in collaboration with KEK Japan. Ultrashort electron beam bunches with energies between 1 and 6.5 MeV are now routinely produced using the copper photocathode of the normal-conducting RF Gun. These beams will be injected into an undulator composed of arrays of permanent magnets to generate electromagnetic radiation between 0.18 to 3.0 THz.

Following the successful completion of combined Pelletron and LINAC operations last year, which resulted in the completion of several long-pending nuclear physics experiments, major maintenance of LINAC modules was undertaken to enhance the performance of three resonators from the second module through additional surface treatment. The fabrication of spare QWRs and Slow Tuners for the superconducting LINAC commenced at the IUAC workshop in late May 2024 after transferring all necessary components, tooling, and fixtures from an external vendor site. Within six months, the fabrication of all six resonators was finalized, and they underwent successful pressure leak testing. A collaboration ongoing with VECC, Kolkata aims to fabricate 5-Cell 650 MHz $\beta=0.61$ elliptical cavities for Fermilab under the Indian Institution and Fermilab Collaboration (IIFC), with IUAC contributing technical expertise and SRF infrastructure.

The materials science facilities were utilized by users from various universities and institutions across India, as well as in numerous programs of national significance from organizations such as ISRO and IGCAR. After a maintenance period in the preceding academic year, the Low Energy Ion Beam Facility became operational with an existing high-voltage power supply. Beam tests were conducted at up to 200 kV with this power supply in preparation for user beam scheduling beginning in May 2024. The negative ion implanter facility (NIBF) functioned effectively, delivering ion beams (¹¹B, ¹²C, ¹⁶O, ²⁷Al, ³¹P, ⁵⁶Fe, ⁵⁸Ni, ⁵⁹Co, ⁶³Cu, ¹⁰⁷Ag and ¹⁹⁷Au) in the 40–200 keV range for approximately 45 shifts of ion implantation experiments. The offline materials characterization and synthesis facilities saw significant utilization from a large number of users. Synthesis (e-beam, RF sputtering) and characterization facilities, including FE-SEM, AFM, UV-Vis, FTIR, and transport facilities, were employed for nearly 1300 samples from users.

The nuclear physics facilities were extensively utilized for user experiments. Seven experiments were conducted at the HIRA facility, focusing on fusion, quasielastic, or transfer measurements in intermediate mass systems. The newly installed multi-anode deep ionization chamber proved valuable in extending fusion measurements to deep sub-barrier energies and accurately identifying multi-nucleon transfer channels. Five experiments were performed using the INGA facility, involving the servicing of Clover detectors and FET replacement for a Clover detector. Furthermore, five nuclear physics experiments were conducted using the General Purpose Scattering Chamber (GPSC) and the National Array of Neutron Detectors (NAND) facilities. A cylindrical scattering chamber, measuring 45 cm in height and 60 cm in diameter, has been developed at the IUAC workshop for astrophysics research using high-intensity beams from the HCI facility. In total, there were approximately 31 publications resulting from nuclear physics facilities this year.

An Accelerator Mass Spectrometry facility for the measurement of ¹⁴C, ¹⁰Be and ²⁶Al, utilizing a 500 kV Pelletron accelerator (XCAMS), has been operational since March 2015. This facility has been extensively utilized for a variety of significant experiments. The graphitization laboratory has processed approximately 1,313 samples, with the graphitization conducted by 61 users. Samples for ¹⁰Be/²⁶Al measurements are processed in a clean chemistry laboratory categorized as 10000-class. To date, 92 samples have been processed for cosmic ray nucleon (CRN) measurements using Accelerator Mass Spectrometry, involving four users from diverse universities and institutions. The compact ¹⁴C Accelerator Mass Spectrometer, enhanced for the measurement of $^{10}\mathrm{Be}$ and $^{26}\mathrm{Al}$ (XCAMS), has routinely measured a total of 1,542 samples. Additionally, the High-Resolution Secondary Ion Mass Spectrometer (HR-SIMS) has been regularly employed for U-Pb and oxygen isotope studies in zircon, depth profiling studies in multi-layered materials, and investigations of Al-Mg isotope systematics in calcium-aluminum-rich inclusions (CAIs) found in meteorites. Last year, a total of 1,293 measurements were completed on samples from nine users across eight universities and institutions. The radiation biology facility has been utilized for two beamtimes focused on studies involving a lung cancer cell line, as well as a facility test employing 50 MeV lithium ions to assess dose uniformity over a circular irradiation area with a diameter of 4 cm. Furthermore, the establishment of an on-site facility for phenotypic screening of gammaand lithium-ion irradiated Pusa Soybean 21 has been initiated, accompanied by significant renovations to the laboratory.

This year has been marked by our dedication to organizing workshops, schools, and conferences on specialized topics, ensuring users stay engaged with cutting-edge experiments and facilities. Over 22 events were successfully held, and with many milestones achieved, we look forward with enthusiasm to embracing new challenges in the years ahead.

AVINASH CHANDRA PANDEY

Director, IUAC

Editors' Remarks

It has been an enjoyable task to collate the information provided by our colleagues from the different laboratories of IUAC and our esteemed users about the academic activities carried out between April 2024 and March 2025. We thank all the contributors whose hard work has made this report possible. We would especially like to acknowledge the efforts of Ritu Rani, Praveen Chakrawarti, Rishabh Prajapati, Alankar Singh, Gonika, Yashraj and Dr. Rishabh Kumar in bringing out this report in time. Mrs. Sheetal is acknowledged for her assistance in preparing the Hindi sections of this report. Despite our best efforts, a few errors may still exist, which we are hopeful will be forgiven by our generous readers. We solicit your comments to improve the next edition of this report.

Board of Editors

IUAC, New Delhi June 2025