CONTENTS

S.No.		Chapter Particulars		Page No.	
1.	AC	CCELERATOR		1	
	1.1	PELLE	ETRON	1	
		1.1.1	Operational summary	1	
		1.1.2	Maintenance and development activities	3	
		1.1.3	Ion source activities	7	
		1.1.4	Beam pulsing system	8	
		1.1.5	Low energy negative ion implanter facility	9	
	1.2	SUPEF	RCONDUCTING LINEAR ACCELERATOR (SC LINA	AC) 11	
		1.2.1	Operational status of the superconducting linac	11	
		1.2.2	Developmental activities accomplished to improve the performance and the reliability of SC linac	12	
		1.2.3	Superconducting niobium resonators	14	
		1.2.3.1	Niobium single spoke resonators - SSR1	14	
		1.2.3.2	Single cell niobium low beta cavity	15	
		1.2.3.3	Facility upgradation	15	
		1.2.3.4	Spare QWRs	16	
	1.3	LOWI	ENERGY ION BEAM FACILITY	16	
		1.3.1	Operation	16	
		1.3.2	Maintenance	18	
		1.3.3	Development	18	
	1.4	PARAS	5	18	
		1.4.1	Operation	18	
		1.4.2	Maintenance	19	
		1.4.2.1	Ion source maintenance	19	
		1.4.2.2	RBS facility maintenance	20	

	1.5	ACCE	LERATOR MASS SPECTROMETRY	21		
		1.5.1	¹⁴ C AMS facility	21		
		1.5.2	Clean chemistry lab activities	21		
		1.5.3	Geochronology facility	22		
	1.6		LOPMENT OF NEW MAGNET FOR 50 KV ION LERATOR	23		
2.	ACCELERATOR AUGMENTATION PROGRAM					
	2.1	HIGH	CURRENT INJECTOR	27		
		2.1.1	High temperature superconducting ECRIS -PKDELIS and low energy beam transport (LEBT)	27		
		2.1.2	Assembly and low power RF tests on the modulated 2.5 m RFQ accelerator	29		
		2.1.3	Drift tube LINAC resonator	31		
		2.1.4	Travelling wave chopper	32		
		2.1.5	48.5 MHz spiral buncher for MEBT section of HCI	34		
		2.1.6	Beam transport system for HCI	35		
		2.1.6.1	Modified beam optics of LEBT section of HCI	35		
		2.1.6.2	Commissioning of XYZ scanner and preliminary field mapping results	36		
		2.1.6.3	Test results of magnets of HEBT section of HCI	37		
		2.1.7	Instrumentation development	38		
		2.1.7.1	Development of low level RF (LLRF) control system for DTL and RFQ	38		
		2.1.7.2	Multi-harmonic buncher (MHB) controller	39		
		2.1.7.3	Pulsing instrumentation for the TWC	39		
		2.1.8	Compact diagnostic Box	40		
	2.2	DEVE	LOPMENT OF AN ELECTRON ACCELERATOR	41		
		2.2.1	Delhi light source based on free electron laser principle	41		
		2.2.1.1	Introduction	41		
		2.2.1.2	Major components of the facility and their status	42		
		2.2.1.3	Conclusion	45		
	2.3	ECR A	ND MICROWAVE ION SOURCE DEVELOPMENTS	45		

3.	RES	SEARCH SUPPORT FACILITIES		
	3.1	SUPPO	RT LABORATORIES	51
		3.1.1	High vacuum laboratory	51
		3.1.1.1	Installation of the low energy beam transport (LEBT) section of high current injector (HCI)	51
		3.1.1.2	GP tube replacement in the ion source area	52
		3.1.1.3	Maintenance activities	52
		3.1.2	Cryogenics laboratory	53
		3.1.2.1	LHe plant operation	53
		3.1.2.2	Electronics for cryogenics and LINAC	55
		3.1.2.3	Other developmental activities	57
		3.1.2.3.1	Quadrupole cryostat	57
		3.1.2.3.2	Carbon link development	57
		3.1.2.3.3	GM cryocooler based LHe liquefier	58
		3.1.2.3.4	Heat transfer studies with cryocooler in refrigerator / liquefier mode:-	59
		3.1.3	Beam transport system	59
		3.1.3.1	Power supplies for HCI beam transport magnets	59
		3.1.3.2	Bipolar triangular-wave current regulated supply development for scanning magnets	60
		3.1.3.3	Beam transport system maintenance	61
		3.1.3.4	Power supply installation	62
		3.1.4	Detector laboratory	62
		3.1.4.1	Hybrid telescope array (HYTAR) and MWPCs in NAND	62
		3.1.4.2	Annular PPAC for coulex	62
		3.1.4.3	Instrumentation	63
		3.1.4.4	Activities in NUSTAR	63
		3.1.5	Target development laboratory	63
		3.1.6	RF and electronics laboratory	65
		3.1.6.1	Status of PSD electronics for NAND array	65
		3.1.6.2	Charge particle detector array (CPDA) of INGA	65

3.1.6.3	Broad band amplifier, ultra-fast discriminators for capacitive pick-off of LINAC	66
3.1.6.4	Solid state RF power amplifiers for high current injector (HCI)	66
3.1.6.5	Status of the multi-harmonic buncher (MHB) for high current injector (HCI)	67
3.1.6.6	Addition of Raspberry Pi based server with existing control system	67
3.1.6.7	High density optically coupled status readout VME board for control system applications	67
3.1.7	Health physics	68
3.1.7.1	Registration in E-LORA facility of AERB	68
3.1.7.2	Radiation safety aspects for AMS facility	68
3.1.7.3	Initiation of radiation shielding calculations for the upcoming FEL and HCI Facility	70
3.1.7.4	Luminescence study of Dyor Ce activated LiCaBO ₃ phosphor for γ - ray and C ⁵⁺ ion beam irradiation	71
3.1.7.5	Thermoluminescent characterestics of nanocrystalline BaSO4:Eu	72
3.1.8	Data support laboratory	73
3.1.8.1	Modification of VME LAMPS for CAEN V785N peak sensing ADC	74
3.1.8.2	Development of electronic modules	74
3.1.8.3	Pulse generator for atomic physics experimental facility	74
3.1.8.4	Octal gate and delay generators for NAND experimental facility	74
3.1.8.5	Quad logic fan-in / fan-out modules for NAND facility	74
3.1.8.6	Repair of faulty electronic modules	75
3.1.9	Computer and communications	75
3.1.9.1	High performance computing facility	75
3.1.9.2	IUAC LAN and servers	76
3.1.9.3	Ion beam simulations	77
3.1.9.4	New generation instrumentation & acquisition system	77
UTILI	FY SYSTEMS	79
3.2.1	Electrical group activities	79
3.2.1.1	Maintenance of electrical installations of substation, office blocks and residential colony	80

3.2

		3.2.1.2	Captive power installations	80
		3.2.1.3	Voltage stabilisers	80
		3.2.1.4	UPS installations	80
		3.2.1.5	Power factor compensation	80
		3.2.1.6	Communication equipments	80
		3.2.1.7	Energy saving	81
		3.2.1.8	Electrical worksfor FEL laboratory	81
		3.2.1.9	Lighting works for high vac furnace	81
		3.2.2	Air conditioning, water system and cooling equipments	81
		3.2.3	Mechanical workshop (MG-III)	82
		3.2.4	Civil works	83
		3.2.5	Compressed air system and material handling equipments	84
4.	EXP	ERIMI	ENTAL FACILITIES IN BEAM HALL	86
	4.1	CDCC	AND NEUTRON DETECTOR ARRAY FACILITY	86
	4.1	GPSCA	AND NEUIKON DEIECIOK AKKAY FACILIIY	00
	4.1	GPSC <i>1</i> 4.1.1	Measurement of neutron cross-talk as a function of distance (angle) in NAND array	8 6
	4.1		Measurement of neutron cross-talk as a function	
	4.1	4.1.1 4.1.2	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to	86
		4.1.1 4.1.2	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays	86 87
		4.1.14.1.2GAMN	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays	86 87 88
		 4.1.1 4.1.2 GAMN 4.2.1 	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays IA DETECTOR ARRAYS Installation of INGA	86 87 88 88
		 4.1.1 4.1.2 GAMN 4.2.1 4.2.1.1 	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays IA DETECTOR ARRAYS Installation of INGA Earthing in INGA	86 87 88 88 89
		 4.1.1 4.1.2 GAMN 4.2.1 4.2.1.1 4.2.1.2 	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays IA DETECTOR ARRAYS Installation of INGA Earthing in INGA Repair of ACS high voltage distribution and preamplifier boxes	86 87 88 88 89 89
		 4.1.1 4.1.2 GAMN 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays IA DETECTOR ARRAYS Installation of INGA Earthing in INGA Repair of ACS high voltage distribution and preamplifier boxes Installation of ancillary devices in INGA	86 87 88 88 89 89 90
		 4.1.1 4.1.2 GAMN 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.2 	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays IA DETECTOR ARRAYS Installation of INGA Earthing in INGA Repair of ACS high voltage distribution and preamplifier boxes Installation of ancillary devices in INGA Charged Particle Detector Array	86 87 88 88 89 89 90 90
		 4.1.1 4.1.2 GAMN 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.2 4.2.3 4.2.4 	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays IA DETECTOR ARRAYS Installation of INGA Earthing in INGA Repair of ACS high voltage distribution and preamplifier boxes Installation of ancillary devices in INGA Charged Particle Detector Array Annealing of HPGe detectors	 86 87 88 89 89 90 90 91
	4.2	 4.1.1 4.1.2 GAMN 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.2 4.2.3 4.2.4 	Measurement of neutron cross-talk as a function of distance (angle) in NAND array Simulation of neutron detector response to mono-energetic gamma rays IA DETECTOR ARRAYS Installation of INGA Earthing in INGA Repair of ACS high voltage distribution and preamplifier boxes Installation of ancillary devices in INGA Charged Particle Detector Array Annealing of HPGe detectors Experiments with GDA	 86 87 88 89 90 90 91 91

	4.4	MATE	RIALS SCIENCE FACILITY	94
		4.4.1	Maintenance of irradiation chambers in beam hall I	94
		4.4.2	Online elastic recoil detection analysis and online residual gas analysis setups	94
		4.4.3	Scanning Probe Microscope	94
		4.4.4	Field Emission Scanning Electron Microscope (FE-SEM)	94
		4.4.5	Status report on spectroscopy facilities	95
		4.4.6	Thermal evaporation and RF parallel plate diode sputtering systems	95
		4.4.7	Experimental set up for temperature dependent high resistance measurements	96
	4.5	RADIA	ATION BIOLOGY EXPERIMENTAL FACILITY	97
	4.6	АТОМ	IC PHYSICS FACILITY	97
		4.6.1	A setup for studying the charge state fraction of post collisional ions	97
5	RES	EARC	HACTIVITIES	99
	5.1	NUCL	EAR PHYSICS	99
		5.1.1	Transfer and fusion measurements for ²⁸ Si+ ^{92,96} Zr systems	99
		5.1.2	Nuclear structure study of ¹⁰⁴ Pd using Coulomb excitation at heavy ion laboratory, Warsaw	101
		5.1.3	Study of static quadrupole moments in ¹²⁰ Te	102
		5.1.4	Study of multiple Coulomb excitation of ¹³² Ba	105
		5.1.5	Re-measurement of transition probability of Sn isotopes using Coulomb excitation method	108
		5.1.6	Observation of incomplete fusion contribution below l_{crit}	110
		5.1.7	Systematic study of incomplete fusion reactions in $^{19}F{+}^{159}Tb$ at energies \approx 4-7 MeV/A	112
		5.1.8	Evaporation residue excitation function for ^{35, 37} Cl+ ¹⁸¹ Ta reaction	114
		5.1.9	Measurement of mass-gated neutron multiplicity for nuclei near super-heavy region	115
		5.1.10	Study of the fission dynamics of ^{192,202} Po using NAND facility	117

	5.1.11	Probing quasi-fission in reactions forming Rn nucleus	118
	5.1.12	Quasi-elastic scattering measurements for ⁴⁸ Ti+ ²³² Th system leading to super-heavy element ²⁸⁰ Cn	119
	5.1.13	Shell closure and target deformation effects probed using evaporation residue cross section and spin distribution measurements	121
5.2	MATE	RIALS SCIENCE	123
	5.2.1	Study on SHI induced hydrogen desorption from porous silicon measured by online ERDA	124
	5.2.2	<i>In-situ</i> structural investigations on $(La,Gd)PO_4$ solid solution series under swift heavy ion irradiation	125
	5.2.3	An <i>in-situ</i> investigation of 100 MeV phosphorous ion irradiation on the electrical characteristics of NPN <i>rf</i> power transistors	126
	5.2.4	100 MeV phosphorous ion induced degradation in electrical characteristics of advanced 200 GHz SiGe HBTs: An in-situ reliability study	127
	5.2.5	In-situ electrical properties of HfO_2 based MOSCAPs under SHI irradiation	128
	5.2.6	Observation of swift heavy ion induced mixing in Pd $_{1-x}Ni_x$ /Si interfaces	130
	5.2.7	Irradiation temperature dependence of shape elongation of metal nanoparticles induced by swift heavy ion irradiation	132
	5.2.8	Influence of swift heavy ion irradiation on the surface and structure properties of C_{70} fullerene	133
	5.2.9	Electronic structure modification and Fermi level shifting in niobium doped anatase titanium dioxide thin films: A comparative study of NEXAFS, work function and stiffening of phonons	134
	5.2.10	Band gap engineering and low temperature transport phenomenon in highly conducting antimony doped tin oxide thin films	135
	5.2.11	Micro-Raman, optical and morphological study of swift heavy ion irradiated ZnO thin films	135
	5.2.12	Modified structural, surface morphological and optical studies of Li ³⁺ swift heavy ions irradiation on zinc oxide nanoparticles	137

5.2.13	Synthesis, characterization and radiation response of HfO_2 based high-k dielectric materials	139
5.2.14	Synthesis of nano-crystalline hafnium oxide thin films by RF magnetron sputtering technique and ion irradiation effects	140
5.2.15	Swift heavy ion induced modifications in GeO_2 thin films prepared by pulsed laser deposition	142
5.2.16	Swift heavy ion induced modification of structural, topographical and magnetic properties in zinc ferrite films	143
5.2.17	Effect of swift heavy ion irradiation on structure sensitive properties of Zr-based bulk amorphous alloys	144
5.2.18	Effect of Ag ⁹⁺ and O ⁷⁺ ion irradiation on the structural and magnetic properties of FeGa thin films	146
5.2.19	Comparison of thermoluminescence characteristics in γ -ray and C ⁵⁺ ion beam-irradiated LiCaAlF ₆ :Ce phosphor	147
5.2.20	Ni ¹²⁺ SHI irradiation induced modifications in morphology, structural and optical properties of polypyrrole nanotubes doped with p-TSA	148
5.2.21	Effect of MeV ions irradiation on physical properties of polyethylene oxide films	149
5.2.22	Radiation induced effects on biodegradable solid polymer electrolyte	150
5.2.23	Influence of ion beam irradiation in microstructure related properties of polymer blend nano composite solid electrolytes	151
5.2.24	Electronic excitation induced modifications of optical and morphological properties of PCBM thin films	153
5.2.25	Structural and optical properties of porous silicon prepared by anodic etching of irradiated silicon	154
5.2.26	Fabrication of porous silicon based tunable distributed Bragg reflectors by anodic etching of irradiated silicon	155
5.2.27	80 MeV nitrogen ion irradiation effects on the I-V characteristics of NPN rf power transistors	156
5.2.28	Swift heavy ion induced radiation effects at Si/SiO_2 interface of MOS devices	157
5.2.29	80 MeV nitrogen ion irradiation effects on DC electrical characteristics of 200 GHz SiGe HBTs	158
5.2.30	Single event effects testing of microelectronic devices using swift heavy ions	160

5.2.31	Radiation induced modification in the properties of nanostructures	161
5.2.32	Radiation damage of heavy ions and H irradiated tungsten – some experimental results	162
5.2.33	Nanostructure modifications of Ni-Ti shape memory alloy thin films by Ag implantation	163
5.2.34	Ion implantation of FePt thin films on Si substrate	164
5.2.35	Oriented growth of cobalt nanoparticle embedded in alumina matrix	165
5.2.36	Study of low energy ion beam induced modifications in the properties of semiconducting nanowires	166
5.2.37	Low energy ion beam irradiation of GaAs nanostructures and study of their transport properties	167
5.2.38	Investigation of blistering process in hydrogen implanted GaSb for potential layer transfer applications	168
5.2.39	Effect of 100 keV N ⁺ -ion irradiation on diamond films	169
5.2.40	Ion implantation on TiO ₂ films	170
5.2.41	Defects and junction characteristics of ion irradiated ZnO	171
5.2.42	Low energy ion beams reduced graphene oxide	172
5.2.43	Low energy ion beam induced change in structural and optical properties of $SrTiO_3$	173
5.2.44	Low energy ionirradiation stability of nano-crystalline cubic zirconia films	174
5.2.45	Magneto-resistance study of low energy irradiated superconductor/ferromagnetic thick films	175
5.2.46	Carbon and proton ion implantation in Al_2O_3 OSL phosphor for medical dosimetry	176
5.2.47	Effect of hydrogen ion implantation on cholesterol sensing using enzyme-free Laponite-Montmorillonite electrodes	178
5.2.48	Energy independence and thermoluminescence properties of Eu Doped BaSO ₄ nanophosphor	180
5.2.49	Gamma ray induced thermoluminescence properties of Eu^{3+} doped SnO_2 phosphor	180
RADIA	ATION BIOLOGY RESEARCH	182
5.3.1	High LET radiation induced effects on signaling pathways in human prostate cancer cell line	182

5.3

	5.4	ATOM	IIC PHYSICS RESEARCH	183
		5.4.1	Experimental evidence of beam-foil plasma creation during ion solidinteraction	183
		5.4.2	Shaking process during heavy ion-atom collisions	184
		5.4.3	Shake off ionization near Coulomb barrier during ion-atom collisions	185
		5.4.4	X-ray spectroscopy around the pile-up region	186
		5.4.5	Lifetime quenching due to surface wake field	187
		5.4.6	L shell X-ray production cross-section measurements in high Z elements using 4-6 MeV/u fluorine ions	188
	5.5	ACCE	LERATOR MASS SPECTROMETRY	191
		5.5.1	Radiocarbon dating of a Harappan site using charcoal samples	191
		5.5.2	Developing chronological constraints for tectonic events in parts of the Himalaya	191
		5.5.3	Vegetation and climate history of peninsular India – establishing late quaternary chronologies from diverse terrestrial sites using AMS dating of bulk sediments and pollen extracts	192
		5.5.4	Cosmogenic ¹⁰ Be dating of the samples collected from different locations to determine their palaeo-environmental implications	195
6.	ACA	ADEMI	IC ACTIVITIES	198
	6.1	BEAM	I UTILIZATION BY USERS	198
		6.1.1	LEIBF (positive & negative ion) beam time utilization and experiments performed (April, 2015 to March, 2016)	198
		6.1.2	Pelletron beam time utilization and experiments performed (April, 2015 to March, 2016)	194
		6.1.3	List of users	202
	6.2	STUDE	NT PROGRAMMES	211
		6.2.1	Summer project for B.Sc. (Physics) students	211
		6.2.2	M. Sc. orientation programme	213
		6.2.3	PhD teaching programme	213
		6.2.4	Teaching lab. activities	214

(6.3	LIBRARY ACTIVITIES	215
(6.4	ACADEMIC ACTIVITIES HELD IN 2015-16	216
(6.5	FORTHCOMING EVENTS: 2016	217
(6.6	LIST OF PH.D. AWARDEES	218
(6.7	LIST OF PUBLICATIONS IN THE YEAR 2015-16	219
(6.8	LIST OF SEMINARS CONDUCTED IN THE YEAR 2015-16	232
(6.9	SCHOOLS, WORKSHOPS AND OTHER EVENTS	233
APPENDIX I			241
APP	END	IX II	248
APP	END	IX III	252