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Abstract 

Plasmas are an attractive medium for the next 
generation of particle accelerators because they can 
support electric fields greater than several hundred 
gigavolts per meter, thus allowing acceleration to high 
energy in a very short distance [1]. These accelerating 

fields are generated by relativistic plasma waves – space-
charge oscillations – that can be excited when a short, 
high-intensity laser pulse (with duration of the order of 
the plasma wavelength) propagates through a plasma [2]. 
If the intensity of the laser pulse is high enough then 
plasma electrons are radially expelled by the transverse 
ponderomotive force of the laser pulse leaving a cavity 
free from electron [3]. Thus in this high intensity regime, 
instead of a running plasma wave a cavity (bubble) free of 
plasma electrons is formed behind the laser pulse, moving 
at nearly the group velocity of the laser pulse. Strong 
longitudinal and transverse electric fields inside the cavity 
are responsible for acceleration and focusing of 
relativistic electrons which can, under the right 
circumstances, be injected into the bubble from the 
ambient plasma. In the present paper an analytical 
approach has been presented to understand the field inside 
the cavity and compare it with the earlier standard laser 
wakefield regime. The laser and plasma parameters have 
been explored using simulations with a three-dimensional 
PIC code VORPAL [4] to accelerate the electron beam up 
to GeV energy. 
 

FIELD INSIDE THE CAVITATED REGION 
Consider a linearly polarized laser pulse 
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inside a homogeneous plasma of density

0n . As the laser 

pulse propagates, its radiation pressure pushes the plasma 
electrons. The pushed plasma electrons flow backwards 
with respect to forward group velocity of laser pulse. 
However due to their large mass the ions are considered 
to immobile. If the intensity of the laser pulse is large 
enough, a cavity free of electrons is formed behind the 
laser pulse, as observed in 3D PIC simulations, moving 
with nearly the group velocity of the laser pulse. Starting 
with Maxwell’s equations in terms of the potentials, and 
using the quasi-static approximation which assumes that 
all quantities depend on y, z, tvx 0−=ζ  instead of y, z, x 

and t gives, 
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Here ⊥A  and 
xA0βφϕ −=  are the normalized vector and 

pseudo-scalar potential, 2122
00 )4( mcenk p π=  and 

cv=β . In deriving these equations a convenient gauge  
(

01 βϕφ +=−= xA ) has been used. Since inside the 

cavity nearly all the plasma electrons are expelled, i.e. 
n=0, the above equations reduce to,  
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where d is constant. The above three equations 
completely describe the field inside the cavity. From Eq. 

(5) it is clear that if 10 =β  then the solution of potential is 
)(),( 21 ζϕϕϕ += zy  where )44( 22

1 zy +=ϕ  and 
2ϕ  is 

any kind of function of ζ , where we assume circular 
symmetry in y & z. Substituting this expression for the ϕ  
in Eq. 5, we can write, ,1
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the solutions of the equations are, 
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where g and d ′  are constant. The possible value of 

constant p is 0β− . So the total potential can be written as  
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0 βζβϕ +−+−= zyG  where G is 

constant and the transverse component ⊥A =0.  From this 

solution of the potential one can see that as 0β deviates 
from unity, the shape of the cavity deviates from 
spherical. The field inside the cavity is given by 
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ACCELERATION OF ELECTRON BEAM 
INSIDE THE CAVITY 

In order to study electron acceleration, we performed 
three-dimensional simulations with VORPAL. In the 
simulations a linearly polarized laser pulse having 
Gaussian temporal and radial profiles was launched in a 
homogeneous plasma. The simulation parameters were as 
follows: a grid size (dx, dy & dz ) of 0.04 µm, 0.8 µm and 
0.8 µm, two macro-particles per cell and a time-step of 
0.13 fs. The laser wavelength (0.8 µm) was resolved over 
20 cells in the propagation direction. We chose a low 
(though experimentally realised) plasma density of 
1.1x1018 cm-3, laser parameters a0=2.2, r0= 28 µm and τL= 
15 fs. Figure 1 shows a plot of the charge density, after 
the laser has propagated a distance of 2.58 mm, in which 
a cavity nearly free from plasma electrons can be seen, 
along with an injected beam inside the cavity. Figure 2 
shows the longitudinal field at the same distance; it can be 
seen that the field is nearly linear.  
 

 
 

Figure 1: Contour plot of charge density, when the laser 
has propagated 2.58 mm, showing clearly the cavity and 
injected electrons in the cavity. 

 

 
 
 

 
 

 
 
Figure 3: Kinetic energy as a function of distance.A 
bunched beam of around 1 GeV can be clearly seen. 

  
Figure 2: Axial electric field as a function of distance,                        
corresponding to Fig.1, showing clearly that the field 
is linear within the cavity. 
 

 

The energy gained by the electron beam after propagating 
a distance of 1.6 cm is shown in Fig. 3. At this distance 
the electron beam has been accelerated to 1 GeV. After 
further propagation the beam comes into decelerating 
phase and starts decelerating.  The quality of beam is as 
follows: a rms energy-spread of 1.4%, normalized 
emittance 20π mm-mrad, with a   charge of  40 pC, and  
rms current of 11 kA with rms bunch length of 3.65 fs. 
 

SUMMARY AND CONCLUSIONS 

In summary, we have analytically shown the field 
inside the cavity generated due to high intensity short 
laser pulse with a homogeneous plasma. Inside the cavity 
the field is found to be linearly varying, which supports 
the quasimonoenergetic feature of the accelerated 
electrons. Using three-dimensional simulations, with a 
proper choice of laser and plasma parameters, we find 
that electron beam injected into the cavity is accelerated 
up to 1 GeV, in only 1.6 cm, with an energy-spread of 
1.4% and a current of 11 kA. The normalized emittance 
of beam is quite high, and needs to be reduced in order to 
use this beam as a driver for a short wavelength free-
electron laser.  
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