
A PYTHON BASED INTERFACE FOR THE

TANDEM-LINAC CONTROL SYSTEM

Ajith Kumar B P

IUAC, Aruna Asaf Ali Marg New Delhi, INDIA

Abstract
 The control system for the Tandem-LINAC

accelerator system at IUAC is a client-server design

running on a network of PCs under the GNU/Linux

operating system. The computers connected to the

devices in the accelerator run a server program. The

computers providing the user interface runs different

kinds of client programs that communicates to the servers

over a TCT/IP network to control/monitor the accelerator

parameters. Both the programs were written in C

language and some programming expertise was required

to write the client programs. The addition of a Python

language interface has enabled the users to write

programs for specific tasks like data logging and partial

automation of the operation with minimal effort.

INTRODUCTION

 Inter-University Accelerator has a 16MV Tandem

accelerator and a super-conducting heavy ion LINAC.

The addition of the LINAC increased the number of

signals and also demanded features like multiple operator

consoles and the ability to run special purpose programs

to condition the resonator cavity, automatically setting the

amplitude and phase of RF etc. These requirements are

met by the distributed control system, were the total

number of signals are divided and connected to different

computers on a network. This scheme if found to be

simple, highly scalable and has been running for more

that past 10 years /1/.

THE CLIENT-SERVER DESIGN

 Every parameter of the accelerator is specified by

three character strings; the name and location, function

and unit. For example, CPS031 VC KV uniquely

represents the voltage control signal of the charging

power supply located in the post acceleration section of

the Tandem. Signals of the accelerator are divided into

small groups based on their location and connected to

different computer running a server program. Details of

the signal like the hardware address, resolution, range etc.

are known only to the server handling it. Every server

maintains a database of all the signals connected to it and

listens over the network for commands from the client

programs to manipulate any signal. The server programs

currently support CAMAC, VME and some home-made

hardware interfaces.

 The client programs provide the user interface

and other functions like alarms and automation. The client

programs specify the signal using the three strings that

uniquely specify it. The communication between server

and clients is mainly through four generic functions. "Get

Value" and "Set Value" for analog parameters and "Get

Status" and "Set Status" for logical parameters. Several

other functions are provided to get more information

about the signal, like the minimum and maximum values,

from the server.

IMPLEMENTATION

 Both the client and server programs were written

in C language. Writing a client program required linking it

with the communication library to make the executable, a

process demanding some programming expertise. To

make this process simpler, a client side communication

library is written in Python /2/ language that can talk to

the servers over the TCP/IP network. Using this feature it

is possible to write small Python programs to implement

tasks like logging of accelerator parameters, automation

of specific operations etc. Python language is chosen due

to its clear syntax, ease of learning and the availability of

libraries for graphics, networking and scientific

computation. The benefits were evident to us due to its

usage earlier in the Phoenix project /3/.

 The simplicity of this scheme is demonstrated by

the example program listed below, which reads the beam

current from the Faraday cup and prints it.

import pelcon

p = pelcon.pserv()

print p.get_value('FC_021', 'CR', 'A')

 This program can be easily modified to vary the

injector magnet field and plot the beam current as a

function of it.

CONCLUSION

 The simplicity of the new Python interface has

enabled those who working on different subsections of the

accelerator to write their own scripts for specific tasks

without having any detailed knowledge about the control

system. It has been already used in automating some

aspects of LINAC operation.

REFERENCES

[1]. Distributed control system for NSC tandem-LINAC.

Ajith Kumar B.P. et.al, Indian Journal of Pure and

Applied Physics Vol 39 Jan-Feb 2001

[2]. http://www.python.org

[3]. http://www.iuac.res.in

http://www.python.org/
http://www.iuac.res.in/
http://www.iuac.res.in/

